WATERIGHT
ONLINE IRRIGATION
SCHEDULING

Developed by:
Center for Irrigation Technology
Fresno State
About WATERIGHT

- The WATERIGHT - developed by the CIT with support from the US Bureau of Reclamation and the CA-DWR (1997).
- WATERIGHT is designed to be a multi-function, educational resource for irrigation water management.
- References over 60 crops grown in California

www.wateright.org
What is WATERIGHT?

- Irrigation Scheduling Tool
- Educational Tool
WATERIGHT

- IMPORTANT NOTE!!
 - Data used to produce the schedule is less than 24 hours old (near real time)
 - The irrigation schedules produced by WATERIGHT are only *estimates* of plant / water requirements. Some of the calculations are based on long-term, average weather patterns and average crop coefficient curves.
 - Field verification by the user is absolutely necessary to ensure proper soil moisture levels and plant health throughout a growing season.
WATERIGHT

- 3 options

- Agriculture
- Commercial Turf
- Home Owner
WATERIGHT

- **Agricultural Users:**
 - Farmers and users whom want to do irrigation scheduling but know nothing about the subject.
 - Farmers whom know about scheduling and want to use WATERIGHT as a tool for more efficient watering schedules.
CIMIS

- 230 Stations Across California
CIMIS - Stations

1. Weather data (collected by weather stations) are automatically transmitted to a central computer located in Sacramento.

2. The weather data is analyzed and stored in a database server.

3. Weather data is made available over the Internet.
Water use estimates

- **Example:**
 - If, $ETo = 0.25$ inches/day
 - and, $Kc = 0.55$ (for an orange tree in July)
 - then, $ETc = ETo \times Kc = 0.25$ inches/day $\times 0.55 = 0.1375$ or 0.14 inches/day

- *Red is from CIMIS*
- *Yellow is from Wateright*
Typical water use demand

Typical Curve - Annual Crop
Typical water use demand

Typical Curve – Permanent Crop
Irrigation Efficiency

- **What is irrigation efficiency?**
 - Irrigation efficiency (IE) is a measure of how much applied water is used beneficially. A general equation for irrigation efficiency would be:

 \[
 IE = \frac{\text{Beneficial Use of Applied Water}}{\text{Total Applied Water}}
 \]
Too much water & nitrates
Proper irrigation scheduling

Verification of water depth can be done using Soil Moisture Sensors
Soil Moisture Sensor Placement
Before Using WATERIGHT

- Know Your Soil Type
- Know Your Irrigation System
- Know Your Crop
- Know Your Water
Agriculture

- A new screen will appear that looks like this.

Detailed Instructions:

5. Select the soil type from the drop-down list.
6. Select the irrigation system from the drop-down list and then click the 'System parameters' button.
7. Then click one of the action buttons above.
Agriculture

- Select “Choose Station”.

![Agricultural Irrigation Scheduling](image)
Select your CIMIS station

- Selected Station 80 (located on the Fresno State campus farm)
Agriculture

- Back to the initial entry screen. Click
- “Set Time/Irrigation Set”.
- Enter 18 for hours.
Agriculture

- Click on “Choose Crop”.

![Image of crop selection interface]
Agriculture

- It will take you to a new screen
- On Crop Name drop down menu select “Almond”
- Default Settings will appear
Agriculture

- You should now be back on the home entry page.
- Go down to “Choose Soil >>>” click on the drop down and select a soil type.

Agricultural Irrigation Scheduling

Field Data Summary

| Field Name: | CIMIS Station - 80
| | City - Fresno
| | County - Fresno |

Choose Station

- Scheduling Basis and Criteria (choose one):
 - Management Allowed Depletion: 50%
 - Est. Time/Irrigation Est: 18 hrs
 - Set Days in Rotation: days

Crop - Almonds

- Start: 3/1
- End: 10/15
- Stop Irrigating: 10/15
- Rootzone: 5 feet
- Etc Adjust: 100%

Choose Crop

- Avail H2O (in/ft) - Soil
 - .45 - Coarse Sand/Gravel
 - .80 - Sand
 - 1.05 - Loamy Sand
 - 1.60 - Sandy Loam
 - 1.95 - Fine Sandy Loam
 - 2.40 - Loams/Silt Loams
 - 2.10 - Clay Loams
 - 1.90 - Silty Clays/Clays

Choose System

System Parameters

- 5. Select the soil type from:
- 6. Select the irrigation system parameters' button

Detailed Instructions:

Step 1: Enter a Field Name.
Agriculture

• Next by “Choose System>>” click on the drop down menu and select an irrigation system type.

Detailed Instructions:
Step 1: Enter a Field Name.
Agriculture

• It will take you to the following screen below.

• Enter a percentage for “System Emission Uniformity”, “Flow Rate”, Tree Spacing, diameter of spray”.

![Agricultural Irrigation Scheduling](image_url)
Agriculture

• Once all the required information has been entered and selected click “Schedule This Field”.

• The Info You have entered will be saved onto Cookies
Agricultural Irrigation Scheduling

- Agricultural Irrigation Scheduling

Seasonal Irrigation Schedule

IMPORTANT:

- Please refer to the notes at the bottom of this page for information on how the schedule was calculated.
- Users ABSOLUTELY need to verify the plant health and soil moisture in their fields.
- This is an AVERAGE SEASONAL schedule and should be used as INITIAL GUIDANCE ONLY.

The Irrigation Schedule starts just below the Field Data Summary.

Field Data Summary

| CINIS Stn: | Fresno State #80 |
| City of Fresno in Fresno County |

Field Number 1
Description North Field
Crop Almonds
Crop Season 3/1 - 10/15
Stop Irrigating 10/15
Soil Coarse Sand/Gravel
Maximum Root Zone (ft) 9
Irrigation System Microsprinkler
Irrigation Efficiency 85%
Gross Application Rate (in/hr) 0.012
Scheduling Basis Hours/Irrigation Set
Desired Hours per Set (hrs) 18
Gross Applied per Set (in) 0.218765192027224

Seasonal Irrigation Schedule

<table>
<thead>
<tr>
<th>For Week Ending</th>
<th>Average Year FTn</th>
<th>Average Year Rain</th>
<th>This Year FTn</th>
<th>This Year Rain</th>
<th>Averages for Season FTn</th>
<th>Averages for Season Rain</th>
<th>Change This Yr vs Avg Yr</th>
<th>Total ETc to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>In/Day In/Wk</td>
<td>In/Day In/Wk</td>
<td>In/Day In/Wk</td>
<td>In/Dy</td>
<td>Ft</td>
<td>HH:mm</td>
<td>%</td>
<td>In</td>
<td></td>
</tr>
<tr>
<td>3/8/2013</td>
<td>0.09</td>
<td>0.21</td>
<td>0.13</td>
<td>0.00</td>
<td>0.57</td>
<td>0.05</td>
<td>5.00</td>
<td>34:19</td>
</tr>
<tr>
<td>3/15/2013</td>
<td>0.10</td>
<td>0.01</td>
<td>N/A</td>
<td>N/A</td>
<td>0.60</td>
<td>0.06</td>
<td>5.00</td>
<td>39:55</td>
</tr>
</tbody>
</table>
Agriculture

Field Data Summary

| CIMIS Stn: | Fresno State #80
City of Fresno in Fresno County |
|-----------:|--|
| Field Number | 1 |
| Description | North Field |
| Crop | Almonds |
| Crop Season | 3/1 - 10/15 |
| Stop Irrigating | 10/15 |
| Soil | Coarse Sand/Gravel |
| Maximum RootZone (ft) | 5 |
| Irrigation System | Microsprinkler |
| Irrigation Efficiency | 85% |
| Gross Application Rate (in/hr) | 0.012 |
| Scheduling Basis | Hours/Irrigation Set |
| Desired Hours per Set (hrs) | 18 |
| Gross Applied per Set (in) | 0.218765192027224 |
Seasonal Irrigation Schedule

<table>
<thead>
<tr>
<th>For Week Ending</th>
<th>Average Year ETo</th>
<th>This Year ETo</th>
<th>Averages for Week Root RunTime Zone</th>
<th>Change This Yr %</th>
<th>Total ETo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In/Day In/Wk</td>
<td>In/Day In/Wk</td>
<td>In/Dy Ft HH:mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8/2013</td>
<td>0.09 0.21</td>
<td>0.13 0.00</td>
<td>0.57 0.05 34:19</td>
<td>44</td>
<td>0.35</td>
</tr>
<tr>
<td>3/15/2013</td>
<td>0.10 0.01</td>
<td>N/A N/A</td>
<td>0.60 0.06 39:55</td>
<td>N/A</td>
<td>0.77</td>
</tr>
<tr>
<td>3/22/2013</td>
<td>0.11 1.71</td>
<td>N/A N/A</td>
<td>0.63 0.07 45:46</td>
<td>N/A</td>
<td>1.25</td>
</tr>
<tr>
<td>3/29/2013</td>
<td>0.12 0.46</td>
<td>N/A N/A</td>
<td>0.66 0.08 54:28</td>
<td>N/A</td>
<td>1.81</td>
</tr>
<tr>
<td>4/5/2013</td>
<td>0.14 0.35</td>
<td>N/A N/A</td>
<td>0.69 0.09 64:19</td>
<td>N/A</td>
<td>2.40</td>
</tr>
<tr>
<td>4/12/2013</td>
<td>0.15 0.47</td>
<td>N/A N/A</td>
<td>0.72 0.11 74:10</td>
<td>N/A</td>
<td>3.24</td>
</tr>
<tr>
<td>4/19/2013</td>
<td>0.17 1.13</td>
<td>N/A N/A</td>
<td>0.74 0.12 84:37</td>
<td>N/A</td>
<td>4.12</td>
</tr>
<tr>
<td>4/26/2013</td>
<td>0.18 0.06</td>
<td>N/A N/A</td>
<td>0.77 0.14 95:15</td>
<td>N/A</td>
<td>5.10</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>0.20 0.04</td>
<td>N/A N/A</td>
<td>0.80 0.16 106:19</td>
<td>N/A</td>
<td>6.20</td>
</tr>
<tr>
<td>5/10/2013</td>
<td>0.21 0.03</td>
<td>N/A N/A</td>
<td>0.83 0.17 118:08</td>
<td>N/A</td>
<td>7.42</td>
</tr>
<tr>
<td>5/17/2013</td>
<td>0.22 0.13</td>
<td>N/A N/A</td>
<td>0.86 0.19 131:04</td>
<td>N/A</td>
<td>8.77</td>
</tr>
<tr>
<td>5/24/2013</td>
<td>0.24 0.00</td>
<td>N/A N/A</td>
<td>0.89 0.21 144:00</td>
<td>N/A</td>
<td>10.26</td>
</tr>
<tr>
<td>5/31/2013</td>
<td>0.25 0.02</td>
<td>N/A N/A</td>
<td>0.92 0.23 157:02</td>
<td>N/A</td>
<td>11.88</td>
</tr>
<tr>
<td>6/7/2013</td>
<td>0.26 0.55</td>
<td>N/A N/A</td>
<td>0.95 0.25 170:33</td>
<td>N/A</td>
<td>13.65</td>
</tr>
<tr>
<td>6/14/2013</td>
<td>0.28 0.00</td>
<td>N/A N/A</td>
<td>0.98 0.27 183:46</td>
<td>N/A</td>
<td>15.54</td>
</tr>
<tr>
<td>6/21/2013</td>
<td>0.29 0.00</td>
<td>N/A N/A</td>
<td>1.01 0.29 195:26</td>
<td>N/A</td>
<td>17.56</td>
</tr>
<tr>
<td>6/28/2013</td>
<td>0.29 0.00</td>
<td>N/A N/A</td>
<td>1.03 0.30 202:09</td>
<td>N/A</td>
<td>19.65</td>
</tr>
<tr>
<td>7/5/2013</td>
<td>0.29 0.00</td>
<td>N/A N/A</td>
<td>1.03 0.30 203:04</td>
<td>N/A</td>
<td>21.75</td>
</tr>
<tr>
<td>7/12/2013</td>
<td>0.29 0.00</td>
<td>N/A N/A</td>
<td>1.03 0.30 202:31</td>
<td>N/A</td>
<td>23.84</td>
</tr>
<tr>
<td>7/19/2013</td>
<td>0.29 0.00</td>
<td>N/A N/A</td>
<td>1.03 0.30 201:06</td>
<td>N/A</td>
<td>25.92</td>
</tr>
<tr>
<td>7/26/2013</td>
<td>0.28 0.00</td>
<td>N/A N/A</td>
<td>1.03 0.29 198:49</td>
<td>N/A</td>
<td>27.97</td>
</tr>
<tr>
<td>8/2/2013</td>
<td>0.28 0.00</td>
<td>N/A N/A</td>
<td>1.03 0.29 195:53</td>
<td>N/A</td>
<td>30.00</td>
</tr>
<tr>
<td>8/9/2013</td>
<td>0.27 0.00</td>
<td>N/A N/A</td>
<td>1.03 0.28 192:09</td>
<td>N/A</td>
<td>31.98</td>
</tr>
</tbody>
</table>
Benefits of Irrigation Management

- Why is irrigation scheduling important?
 - Improved water and energy use
 - Water Use Efficiency (WUE) – More Crop Per Drop
 - Irrigation management is a crucial key to utilize fertilizer effectively on farmlands.
 - Protect ground water quality
 - Sustainable water supply
Summary of WATERIGHT

- Education Tool
- Helps with water budgeting
- Know “How Much” and “When”
- Promotes Flow Meters and Moisture Sensors as a valuable tool
- Best Management Practice
 - Avoid deep percolation and over irrigation
 - Manage water in the Root Zone
Questions

www.wateright.org